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Overview and Research Summary

Introduction

This research, funded by a grant from the Army Research Office of Terrestrial Science
Hydrology/Geomorpholgy Program, is developing a physically-based, Low-Dimensional Modeling
System (LDMS) for runoff for regions of complex terrain. A traditional approach to rainfall-runoff
focuses on channel and surface flow processes. However, this study emphasizes the longer time
scales of soil moisture and subsurface storage in controlling runoff, within regions of complex
topography and geology. For a single stream-reach, our modeling strategy identifies how hillslope
soil moisture and subsurface storage interact with channel processes through direct coupling and
feedback from baseflow and bank storage, deep recharge, and saturation-overland flow processes.
The model includes the essential components of atmospheric forcing from rainfall, evaporation,
transpiration, snow accumulation and snowmelt and their dynamic interaction with soil moisture and
saturated groundwater to produce runoff. In the case of stream networks and/or vertically stratified
geology contributing to runoff, the hillslope-stream-reach becomes an element in an extended
dynamical system. The extended dynamical system is a spatially distributed model which attempts to
preserve the statistically important time/space scales of the catchment runoff. In this sense, a
particular hillslope and corresponding stream-reach represents a spatial random variate (Duffy,
1996) from the underlying distribution of hillslopes within the watershed or drainage basin. At any
point within the stream network, runoff represents an integration of the upland contribution from
spatially random elements of hillslope storage and flux. From this perspective, the question for
prediction is: What is the distribution of contributing hillslopes and what are their "expected"
time/space scales? From our signal processing and dimension estimation work, the number of time
scales contributing to runoff seems to be limited, with only a few hillslope scales contributing most
of the runoff. The number of states contributing to runoff becomes a problem of state-space

dimension estimation.

This report will outline a systematic approach to the problem of physically-based modeling

in complex terrain involving four basic steps:

¢ Dynamical model development at the hillslope-stream-reach scale.

o State-space dimension estimation from historical streamflow and hydroclimatic
observations.

e Conceptual-mathematical model development based on terrain features, geology and the
relation to the stream network.

e Model and parameter identification/calibration and verification



The first phase of this research effort has involved the development of a hillslope dynamical
modeling system which couples the dynamics (feedback and interaction) of the important physical
processes within a stream reach. A paper by Duffy (1996) and a dissertation by Lee (1994) provides
details of the first development of the model. Recent progress has involved examining the stability of
the hillslope-stream-reach system, and an extension of the model to include the effects of
macroporous soils and rocks on soil moisture, groundwater storage and runoff timing. A paper on
the stability of the hillslope component of the model was recently published (Brandes, Duffy and
Cusumano, 1998), and another paper has been completed on the macropore extension of the model
Brandes and Duffy, 2000).

The problem of dimension estimation and the forming of the hydrogeologic conceptual
model is an essential ingredient in the LDMS approach. Qualitatively, the characteristic terrain of
physiographic regions of North America implies some measure of similarity in form. Hydrologists
have also known that there seem to be a limited set of time/space scales contributing to runoff
(Jakeman and Hornberger, 1984). Here we attempt to move beyond this qualitative notion of
"characteristic terrain", to a quantitative statistical method to estimate the dimension of the state-
space contributing to runoff at a point. It can be thought of as the number of independent hillslopes
(time/space scales), which make up the dominant contribution to the runoff time series. We have
adopted the signal processing technique of singular spectrum analysis, also known as Karhunen-
Loeve decomposition or principal orthogonal decomposition as a means of estimating this dimension
from historical precipitation-temperature runoff data. We have applied the approach to mountain-
front runoff response for the Wasatch Front (Shun and Duffy, 1998), the Susquehanna, Rio Grande,
Colorado and Washita rivers in the US. The dimension estimation amounts to a partitioning of time
variance of runoff into independent components. A ranking of the eigenvalues for each independent
component gives a measure of the relative contribution of each independent mode (eigenvector) to
the overall runoff signal. The dominant modes of fluctuation are then qualitatively related to
characteristic terrain features , soils and geology. This leads to a conceptual model of the hydrology-
hydrogeology, the hillslope-stream-reach dynamcial model and finally to an estimate of the extended

dynamical system for watershed.

The final phase of the research is the development of a calibration and validation procedure with
field applications over a range of physiographic, climatic and geologic conditions across North
America. We have successfully incorporated an optimization algorithm based on the genetic
algorithm. The genetic algorithm serves two purposes:

e The algorithm performs a random search of the expected range of the physical parameter
space and allows the user to utilize available hydraulic and physiographic information on the
soil and geologic material (e.g. porosity, hydraulic conductivity), terrain features (slope,
length of flow, contributing area) from the watershed database.




¢ It allows the modeler to test the relative significance of adding new state variables (hillslope-
reach, or deeper geologic strata) to improve the model performance.

The case study presented here is the Upper West Branch of the Susquehanna River. This paper has
recently been submitted to Water Resources Research (Shun and Duffy, 2000). A second model
application is underway in the Washita River basin in Oklahoma and this paper is in progress. The
third application is the Shale Hills watershed near State College, PA. The model has been
implemented, parameters estimated and a paper will be completed during 2000.

The Dynamical Hillslope-Stream-Reach Model

A dynamical model is devised for a where unsaturated and saturated storage serve as the principal
control on rainfall-runoff, and where complex topography, drainage area and variable depth of
moisture penetration describe the flow geometry. The model is formed by direct integration of the
local conservation equation with respect to the partial volumes occupied by unsaturated and
saturated moisture storage, respectively (Duffy, 1996). This yields an "integral-balance" m. The
parametric form of the storage-flux or constitutive relationships for the proposed model is
determined from numerical experiments in a simple hillslope flow geometry.

It can be said that the fundamental equation of hydrology is the water balance or conservation of

fluid volume

E;'=1—Q (1)

where V' represents the global fluid storage volume, / the volumetric input and Q the volumetric
discharge or output. For a hydrologic system with interacting physical processes, (1) can be written

in state-space form:

as
E—f-g (2)

where the state variables or storage components form a vector §={§,S,,..5,}; the
vectors f ={f,,f;s...f,}, and g={g,&,...&,} represent the various input-output flux components
to and from each state. Both fand g are in general, functions of the system states, §.

Although the state-space framework offers a simple representation of the system dynamics, the
particular form and meaning of the inputs, outputs and states must be made explicit. The
interpretation of (2) as a conservation statement for the system implies that the state variables are
formed by integration over an appropriate flow volume for each state, and that the observables are
defined as volume averages. Likewise, the flux quantities represent integrations of the distributed
flow over the surfaces separating the states. The relationship between the surface fluxes and states
represent the constitutive relations for the system. In the next section an integral-balance
formulation is developed at the hillslope scale which represents the elemental spatial scale for
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predicting runoff in complex terrain. Besides developing the basic model equations this section
outlines the physical processes which relate storage to flux and define the constitutive relations of
the model.

The integral-balance for the hillslope-stream-reach in state-space form can be written:

ds,
El':fox—glz i

ds
'E:“'—'foz_gzl_gg—fzo

(3)
dar =qn + 85— %o

where

S, = unsaturated moisture storage

S, = saturated moisture storage

S, = channel storage

fo; = incoming boundary flux to §,

f1o =outgoing boundary flux from §,

f, = outgoing boundary flux from §,

fo, = incoming boundary flux'to S,

8. = —8,, = groundwater - channel flux §, & S,
8. =—8, =recharge flux §, & §,

go; = upstream inflow to channel reach

45, = downstream outflow from reach

The double subscripts on boundary flux quantities define the predominant sense of the flow direction
as from-to (0-exteranl environment, 1-unsaturated storage, 2-saturated storage, 3-channel storage).
For example the subscript 01 refers to a flow from the environment directed to state 1 (infiltration).
The next section deals with the relation of state variables to flux rates for the hillslope system and

the numerical experiments carried out to define each relationship.

Numerical Experiments and Development of Flux-Storage Relationships

The integration of the local equations removes the infinite dimensionality associated with
continuously varying parameters and variables in space (as in the PDEs), and also provides a
hydrologically useful scale for modeling - that of the hillslope. The effects of local processes and



local spatial heterogeneity on integral hillslope response must be parameterized through the integral-
scale constitutive relations, that is, “effective” representations of such processes are required. The
ability to simulate at spatial scales less than that of the hillslope is obviously lost; however, as a
practical matter such detail is usually unnecessary in modeling fluxes relevant to water resource
management.

To develop the model, one needs to determine how the integrated moisture state variables are
related, i.e., the equilibria, for typical hillslope geometries. In addition, the form of the integral
constitutive relations for hillslope fluxes f(S,,S,) and g(S,,S,) must be developed. Given such
relations, the system (3) becomes a low-dimensional, physically-based model of hillslope-stream-
reach hydrology.

The key to formulating a useful model from the integral-balance structure, is the determination
of appropriate hillslope or catchment-scale constitutive relations. By incorporating these relations
into the integral-balance, the model becomes system-specific. The approach we have taken
(Lee,1993; Duffy, 1996; Brandes, 1998) is to base these relations upon steady-state numerical
solutions of Richards’ equation over a hillslope domain. Implicit in this approach is the assumption
that the dynamics far from equilibrium are in some sense similar to those near equilibrium, and can
be represented by the steady-state storage-flux relations

Approach
Richards’ equation in pressure-head form (1) is solved over a two-dimensional discretized hillslope

domain using the galerkin finite element code FEMWATER (Yeh, 1987). The nonlinear matrix of
element equations is linearized by guessing initial values for {y}, and then is solved directly by

Gaussian elimination. New values of {y} are estimated using under-relaxation, and the procedure is
repeated until convergence (¥ to within 0.0001 meter) is achieved. For approximating the time

derivative, the fully implicit method was used. Further details of the numerical method are
contained in Lee (1993).

The experiments involve steady-state solutions for a range of constant precipitation rates to cover the
full range of hillslope saturation. Precipitation is applied uniformly to the hillslope. The numerical
runs were made from an arbitrary initial condition, usually a constant pressure head throughout the
domain. For each experiment, the integrated moisture state variables S, and S, are determined
numerically by summing over the saturated and unsaturated hillslope volumes. The steady-state
position of the water table and associated surface saturated area are also determined during the
experiment. In addition, the code provides total flux rates through the various boundaries (stream,
seepage, infiltration). Note that at steady-state, the subsurface flux rate will generally not equal the
precipitation rate applied, due to rejection of precipitation along the saturated portion of the ground
surface. This physical process, known as saturation overland flow, is an important outcome of the

steady-state numerical experiments.



Hillslope seometry, boundary conditions and soil properties

The geometry used for most of our experiments is that of a convex-concave hillslope of height (H)
25 m, length (L) 100 m, and soil depth (d) of 2.5 m over an impermeable base (see Figure 1). These
shape function is considered typical of hillslopes in humid-temperate regions. The surface shape
function is given by (Lee, 1993):
PR
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Figure 1. Schematic of the hillslope geometry and boundary conditions used in the numerical
experiments (not to scale).

The domain is discretized into 4000 quadrilateral elements (4221 nodes), consisting of 200 rows by
20 columns. Thus, each element is 0.5 m long by 0.125 m high.

The boundary conditions include no-flow (Neumann) boundaries along the sides and base of the
hillslope, a variable infiltration/seepage boundary along the ground surface, and a single constant
head (Dirichlet) node at the foot of the slope representing a first-order stream. The no-flow boundary
beneath the stream is due to converging flow from the hillslopes on opposite sides of the stream
(symmetry condition), and the no-flow boundary along the base of the hillslope represents an
impermeable bedrock layer.




For this report, results for three soil types are reported, a Guelph loam, a Plainfield sand, and a
medium sand (Clapp and Hornberger, 1977) designated Cl&H sand. These soils represent a wide
range of hydraulic characteristics. Additional soil types and hillslope geometries have been
investigated by Lee (1993) and Brandes (1998), and those presented here reflect the general results.
The numerical code requires input of analytical functions or tabular data describing soil moisture
content, soil moisture capacity, and unsaturated hydraulic conductivity as a function of pore
pressure. Analytical soil hydraulic property functions were generally used in the numerical model;
however, in some cases (very low precipitation rates, highly permeable soils) tabular input was
necessary for numerical convergence. For the Guelph loam and Plainfield sand, soil hydraulic
properties were described by the nonhysteretic Elrick et al. (1990) parameterizations:

By = —2— 1, ©)
¢, +v]
K(y) = K, e ©)

where 8, ¥, and K are defined as previously, K, is the saturated hydraulic conductivity, and ¢; and

k are fitting parameters. For consistency, the C1&H sand property data were also fitted to these
parameterizations rather than the method used by Clapp and Hornberger (1977). Table 1
summarizes the soil property parameter values used in the numerical experiments:

Soil Type K., 0, k ¢ c, 3 Cy
(cm/s) (m™)
Guelph loam | 3.67e-04 | 0.523 | 336 | 0.243 | 0421 2.0 0.28
Plainfield 3.44e-03 | 0477 | 13.06 | 0377 | 0.00154 4.0 0.1
sand
Cl&H sand 1.76e-02 | 0.395 6.24 | 0323 0.927 0.85 0.086

Table 1 Summary of soil property data used in the numerical experiments.

The selected soils cover a range of almost three orders of magnitude in conductivity and a wide
range in porosity. The water retention and relative conductivity functions are shown in Figure 2.
Note that the Guelph loam retains significantly more moisture than the sands, and thus shows a
gradual decrease in conductivity with pore tension, while the Plainfield sand exhibits the
characteristics of a uniformly-graded soil, with moisture content and conductivity dropping sharply
over a narrow range of pore tension. The CI&H sand hydraulic behavior is intermediate to the
Guelph and Plainfield soils. Note that channel stage effects are included in these experiments and
thus the emphasis is on developing relationships for the soil moisture and saturated storage.
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Figure 2 a) Soil moisture characteristic curves, and b) hydraulic conductivity functions for the
Guelph loam, Plainfield sand, and Cl&H sand (K, = K(y)/K,,).

Results
Results for the Guelph loam soil are shown in Figure 3. The first plot (a) shows the steady-state
relation §,*-S,* , developed over a range of precipitation rates, i.e., the fixed points for different
values of precipitation p. Note that the * indicates that the depth of storage is made dimensionless by
the 'd' the depth of the soil. The * is dropped in later plots. The second plot (b) shows §, and §,
against f;,, the net steady flux through the hillslope. The third plot (part c) shows fractional saturated
surface area (fr;,) against S,. Similar results were obtained for the other soil types.

A fundamental result of these numerical experiments is the competitive or inverse
relationship between the moisture state variables over most of the range of soil moisture, except
when the water table is at or near its lowest state (see Figure 3a). The form of this relationship can
be understood in the following way: the hillslope contains a fixed volume of pore space, that must
be shared by the saturated moisture (S,), the unsaturated moisture (S,), and the empty (air-filled) pore
space. Thus, except where the empty pore volume is large, there is an inverse or competitive
relationship between S, and S,. This general structure is seen for a variety of soil types and hillslope
configurations (Lee, 1993; Brandes, unpublished). Based on extensive numerical experiments, the

flux-storage or integral constitutive relations are found to be nonlinear.
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Figure 3 Numerical experiment results for the Guelph loam hillslope: a) fixed points fir , b) flux-
storage relations, and c) saturated surface area-storage relation. f, is the steady flux rate through the
hillslope; frqs, is the fractional surface saturated area. Fits to the model are shown as solid lines.

The fitted two-state variable model

Duffy (1996) parameterized the results shown in Figure 3 above, and developed the following forms
for the flux terms of for a two-state model (no channel storage):

fu = p[1-d,(S,=5])] ' 7)
8, = dofS,=S/)+4d,(S, +d2)(52"55)2 (8)
foo = d5(S, - S;) )
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The form of the model becomes:

ds o o
—= plI-d(S,~ S )| - d)(S,~S7) - d,(S, +d,)(S,~S;)*(10a)
ds,

5 dy(S,-S87 )+ d(S, +d,)(S,~S5)* — d,(S,~S;)(10b)

where p is the precipitation rate, Sy and S5 represent residual storage (p = 0), and the d;’s are fitted
parameters. The term f, is the net infiltration to the hillslope. This “effective precipitation” is
inversely proportional to the extent of surface saturation, which is itself a linear function of saturated
storage. The rejected precipitation p,,=(p - f;,) becomes ssurface runoff to the channel, and thus the
model represents the mechanism of saturation-excess runoff in addition to subsurface flow. Outflow
from the hillslope (f,,) is shown to be a function of saturated storage (linear in eq.9). The steady-
state rescharge rate g,, contains a nonlinear coupling for the two state variables. The justification for
this form of the model is that it is consistent with the numerical experiment results and is of low
order (Duffy, 1996); however, other forms of the model are certainly possible, for instance quadratic
or cubic external flux relations. The fluxes f, (evaporation) and f,, (leakage into the saturated zone)
were not included in these numerical results and will be developed in a later section.

The physical meaning of the model parameters can be generally deduced from the flux terms (7) -
(9). These parameters can be thought of as integrated versions of the parameters describing the C(y)

and K{(y) relationships of Richards’ equation at the local scale. The parameters d,, d,, and d,

describe the form of the moisture relation S,(S,), which is a function of soil hydraulic properties and
hillslope geometry. Parameter d, is a rate constant for subsurface flow, which depends on hillslope
geometry and soil hydraulic conductivity. Parameter d, describes the relation between surface
saturation and saturated storage, a function of hillslope geometry.

In terms of the saturated zone, this physically-based formulation is not unlike TOPMODEL of
Beven and Kirkby (1979), which includes the processes of infiltration and saturated storage, surface
runoff from saturated areas (quick flow response), and subsurface runoff (delayed response).
However, in their model, infiltration simply cascades to the saturated zone when a threshold is
reached. In contrast with (7) the competitive and nonlinear cross term for recharge is a critical
component of the model, providing two-way coupling between the unsaturated and saturated
dynamics consistent with the physics of recharge and relaxation of the water table surface (Duffy,

1996).
Macropore Flow and Hillslope Dynamics

Numerical experiments carried out by Brandes (1998) and Lee (1993) for unsaturated-
saturated flow on hillslopes using classical parameterizations of matrix soil hydraulic properties,
indicate excessively long response/relaxation times in comparison to similar field soils. Apparently
the hydraulic properties of field soils are much smaller than the integrated effective conductivity of

11



the hillslope or watershed. We attribute this significant "error" to "macropore"” flow in the field soils,
that is, flow through interpedal cracks, root holes, or other channels of biological origin not
accounted for in the soil matrix hydraulic conductivity. Further, recent data for macroporous soils
suggest hydraulic conductivity functions (K(y)) often have a sharp increase in conductivity near

saturation and an overall bimodal appearance of the K{y) relationship.

A simple method is devised for estimating such hydraulic conductivity functions for
macroporous soils, conceptualizing the soil as an equivalent porous medium with pore-size-weighted
effective conductivity. The method requires a macropore size density function and macroporosity
estimate, in addition to the matrix hydraulic conductivity function and total porosity. The resulting
effective K(y) functions are then used to numerically model variably saturated flow on a hillslope.

The numerical experiments suggest that the presence of macropores: 1) increases the steady-state
moisture storage in the unsaturated state; 2) increases the steady outflow rates from saturated storage
in proportion to the increase in effective saturated conductivity; 3) decreases the subsurface storm
response time (time to peak); and 4) significantly alters the shape of the storm hydrograph and the
relative contributions of surface and subsurface flow. A brief discussion of the method and results is
presented next.

“Macropore” flow through litter, structured soils or biologically-induced channels is quite
common on forested slopes (Beven and Germann, 1982). Observations of rapid subsurface response
at many humid forested watersheds (see for example Hursh, 1936; Hursh, 1944; Whipkey, 1965) and
a semiarid hillslope site (Wilcox et al., 1997) suggest that macropore flow is an essential component
of the runoff response of upland watersheds. Moreover, fitting of recession flow data from small
watersheds to lumped-parameter hydraulic models (by inverse methods) has resulted in basin-scale
effective saturated conductivity values approximately one to two orders of magnitude greater than
indicated by available laboratory measurements (Zecharias and Brutsaert, 1988; Troch et. al., 1993).

We first develop a simple, yet physically-based parameterization of the hydraulic
conductivity function for macroporous soils. The approach taken here is to modify the matrix K(y)

function to include the effect of macropore flow near saturation. Since the focus is on hillslope-scale
behavior, the continuum or "equivalent porous medium" approach is used rather than treating the
macropore domain explicitly (e.g., Barenblatt et al., 1960; Beven and Germann, 1981).

Next the composite or effective conductivity functions are tested using numerical
experiments to assess the effect of macropore soil properties at the hillslope storage and flow. Of
primary interest are the effects on moisture equilibria, outflow time scales, surface and subsurface
runoff response. The numerical experiments include steady-state and dynamic conditions, a convex-
concave hillslope, two distinct soil types, with two levels of macroporosity. Results are compared to

those for the same soils without macropores.

The method is based on the following simplifying assumptions:

12



e During conditions when macropore flow is occurring (soils near saturation), the pressure
in the matrix and macropores is equal. Therefore transient local conditions, such as water
flowing into the macropores from the surface and then diffusing into the surrounding
matrix, are not explicitly considered.

e The above assumption implies that pressure equilibration occurs rapidly as water flows
within the two pore domains.

o The macropores are idealized as interconnected capillary tubes, which transmit flow only
when the pore tension is less than the air entry suction value. Film flow along macropore
walls and the potential effects of pore channel tortuosity are not considered here.

Under the conditions stated above, one can define an effective hydraulic conductivity (K,z),
which is a porosity-weighted average of the matrix conductivity and the macropore conductivity:

Kop (W) = frp Knp(W) + (1= frip) Ky (W) (11)

where fr,, is the fraction of the total porosity composed of macropores, K, is the conductivity of
the macropore network, and K|, is the conductivity of the soil matrix. Both K, and K, will be
functions of the pore tension Y- for the matrix through a known K, () relationship (as determined

in the laboratory), and for the macropores through capillarity, which will govern the pore sizes
which are saturated and thus transmitting water at a given tension. Principles of hydraulics of flow
in cylindrical tubes are used to calculate hydraulic conductivity of the macropores (similar to the
approach used by Chen and Wagenet, 1992).

To apply these equations, two additional pieces of data are required: the macroporosity
fraction fr,,» and a macropore pore size distribution or density function f{r). Values of 0, 0.001, and
0.01 were used for fr,» to represent a full range of reasonable values. Various studies have found
that numbers of soil pores of a given size class are inversely proportional to pore size (e.g., Wilson
and Luxmoore (1988) infiltrometer data). Therefore, an exponential probability density function

was used:
f(r) =k exp(~k, 1) 12

where r is the pore radius, and k, and k, are fitting parameters. Since the area under the density
function f{r) must integrate to unity, the parameters k, and k, are interdependent (furthermore,

approximately equal for &, and k, > 1). The sensitivity of K, to these parameters was assessed, and
it was determined that the effect was small in comparison to the value used for fr,,. For the results
shown here, the values k, = 0.63 and k, = 0.6 were used with a macropore radius range of 0.01 to 2.5

13



mm. The 0.01 mm radius corresponds to a y,, value of -1.5 m; below this value, flow is assumed to

occur only in the matrix domain.
Given the function f{7), the weighted macropore conductivity is calculated using the
following equation:

[ Kyplr) fir)dr
Kyp(y) == (13)
ff(r)dr
0

with 7* chosen such that y (r*)=y, that is, the weighted sum includes only those pores (with 7 < r*)
which are contributing to flow at a given value of y. This integral is evaluated discretely for

increasing pore tensions (decreasing values of r¥), starting from saturated conditions where all pores

are contributing flow.

Matrix soil properties

Two soil types were used in the K, calculations and simulations, a Guelph loam and a
Plainfield sand. The Guelph loam has finer-grain size, and retains significantly more moisture than
the sand, and thus shows a gradual decrease in conductivity with pore tension. The Plainfield sand
exhibits the characteristics of a uniformly-graded soil, with moisture content and conductivity

dropping sharply over a narrow range of pore tension between 0.1 m and -0.5 m. The K, ()

functions for the unsaturated soils is represented by the exponential Gardner relation:
Ky (W) = K exp(—Y) (14)

where K,,, =3.67x10™ cm/sec and o =3.36 m for the Guelph loam, and K, = 3.44x10° cm/sec and
o = 13.06 m™ for the Plainfield sand (Elrick, 1990). These two soils bracket the threshold saturated

conductivity value of 10° cm/sec for subsurface storm flow, suggested by Freeze (1972).
Once the composite conductivity functions were developed, the galerkin finite element code
FEMWATER (Yeh, 1987] was again used to solve Richard's equation over a two-dimensional
hillslope domain as described earlier.

Steady-state results for the two soil types and three values of macropore fractions ( f,,,=0.0,
0.01 and 0.001) are shown in Figures 4 through 7. Figures 4 and 5 show the steady-state integrated
moisture (S,*, §,*) and storage-flux (g(S,)) for a range of constant precipitation rates, and shows the
expected inverse relationship between saturated and unsaturated moisture, except under dry
conditions, as discussed previously by Duffy (1996) and Brandes et al. (1998). We note that
although the soil moisture retention curve &(y) is unchanged by the macropore parameterization,
there is a significant effect on the unsaturated-saturated storage, since this depends on the overall
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rate of flux through the hillslope. In particular, for macropore flow, higher flux rates and a lower
water table are observed within the saturated zone to balance the increased steady flux rate through
the hillslope . The lower water table leads to an overall higher moisture storage in the unsaturated
zone.

The effect of macropore flow is most pronounced for the Plainfield sand (Figure 5). For fr,,=0.01,
the relation attains a maximum with relatively flat slope over intermediate values of S,. In this case,
the macropore conductivity increases over the same range of pore pressure where moisture content
changes rapidly in the soil moisture characteristic &y). Therefore, relatively large increases in S,

are required to increase the unsaturated hydraulic conductivity necessary to transmit the macropore-
enhanced fluxes.

Under very dry conditions and with macropore flow, the numerical solutions for both soils
did not converge near the peak of the soil moisture storage . This is due to the highly nonlinear
effective conductivity relations, and to the presence of weakly damped equilibria (see discussion in
Brandes et al., 1998).

The steady flux data are shown in the lower portion of Figures 4 and 5, give the subsurface
flux rate as a function of the saturated storage S,. The steady flux rates for the Guelph loam
hillslope increase by about an order of magnitude for f,,,=0.001, and by two orders of magnitude for
Jry»=0.01. The effect is less pronounced for the Plainfield sand. Note that the steady-state fluxes are
not equal to the applied precipitation rate, due to rejection of infiltration along the saturated surface
near the stream. This relationship between the extent of surface saturation and saturated storage is
determined by hillslope geometry and boundary conditions, and is not effected by macropores.

It is clear that the subsurface flux rates are greatly enhanced by macropore flow as
parameterized here. Interestingly, this effect is apparently proportional to the effective saturated
conductivity of the hillslope. Figure 6 shows the combined data from Figures 6 and 7, with each
curve scaled by the associated K,,,, value. Note that the data fall very close to a single curve,
except at very high levels of saturated storage (5,>0.8). Note that the flux -storage relation now
requires a nonlinear function and we adopt the form:

g/ K, = [c S-S+, (5,~8)] (15)

where ¢, = 0.0105, ¢, = 0.0032 , and S, = 0.166 for these data. The c; can be thought of as rate
constants, and the parameter S,° describes the residual moisture storage (corresponding to p=0).
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Figure 4. . Saturated-unsaturated storage (upper plot) and the subsurface for the Plainfield sand for

3 values of macropore flow fr,,=0.0, fr,,=0.01 and fr,,=0.001, (after Brandes and Duffy, 2000).
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Figure 5. Saturated-unsaturated storage for the Guelph loam for 3 values of macropore flow

Jrs=0.0, fr,,,=0.01 and fr,,,=0.001, (after Brandes and Duffy, 2000).
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Figure 6. Scaled data for both soils based on equa. (14) g/ K, = f(S,) (after Brandes and Duffy,

2000).

Evaporation and Transpiration

The two-state integral-balance model for unsaturated-saturated flow (Duffy,1996) is
extended to study the timing of atmosphere-controlled and soil-moisture controlled evaporation for
sloping topography. The modeling strategy is to construct the state-space for unsaturated-saturated
storage by direct integration of the unsaturated-saturated flow equations (Richards' equation) and to
devise a parametric model for evaporation. An empirical evaporation equation is proposed, which is
a function of both the unsaturated and saturated state variables. The dynamical system now takes

the form

ds

E;L =for— 82 "o

ds.

— = — &y~ €y~ J>

a for— &1 —€xn— fo (16)

For the saturated surface (3(S,)) evapotranspiration flux is subject to "atmospheric" control and e,,

is simply defined as the product of the potential evaporation p,and (B(S,)):

€y~ Peﬁ(Sz) (17)

Evapotranspiration flux over the unsaturated surface of the hillslope is assumed to be controlled by
the soil moisture and is defined as product of p,, the fraction of the hillslope that is unsaturated and

the soil evapotranspiration function w(y):
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e, = p, (1= B(5,)) - w(x) (18)

The soil moisture evapotranspiration function w(y)is a weighting function (0,1) defined as:

(I+ax)x™ M
wx) a+x" x d-n-S5, (19)

The function x(S,,S,) represents the degree of saturation of the unsaturated volume, d the average
depth of the soil and m determines the shape of w(y). The formula of Thornthwaite [1948] relates
potential evapotranspiration to temperature (ET, <T%) where T is the mean daily air temperature
For simplicity, the potential ET is expressed as the power function of the daily maximum
temperature,

\3

-] -n (20)

max

The ET model results suggest that the extent and timing of surface-saturation during cycles of
wetting and drying is dependent on the saturated (storage) of the watershed, which in turn is closely
tied to the soil moisture storage and the magnitude of surface and subsurface runoff components.
The transition from atmosphere-controlled evaporation to soil-controlled evaporation following
precipitation is examined for a range of soil types and hillslope geometries. This transition may be
abrupt or smooth depending on the parametric form of the evaporation term and the overall storage
characteristics of the terrain.

Snow Accumulation and Melt

A simple model for daily potential snowmelt model was developed by the U.S. Army Corps of
Engineers and described by Singh, [1992] and have adapted the model here. The basic idea is that
the potential flux due to snow melting is a simple function of air temperature

M=04T-T,,) 3}

where T is the daily maximum air temperature, M [mm/day] is the potential snowmelt at T {°F]and

T, is the local melt temperature. The range of 7, is from 27 to 42 [°F] which corresponds to

melt

open and forested sites.
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Based on the potential snowmelt relation (21), the accumulation and melt of snow and the relation to
infiltration is formed by the following conditional statements:

B,()=f(B.1),if T2T,,, (23)
P()=0, and P() = B(t~1)+ F(t),if T< Ty, (24)
f(B.)=M and P(+1)=P.()- M,if M<P(r) (25)
F(B.T)= P(0) if M> B(t) (26)

where P, (t) is the snowmelt at time t, P(t) is the precipitation at time t and P(t) is the amount of the
accumulated snow-pack at time t. At any time, precipitation is the sum of rainfall and snowmelt.

Space-Time Decomposition and Dimension Estimation

Multichannel SSA is a space-time version of the Karhunen-Loéve theorem and a
general discussion of the method is provided by Plaut et al. (1994). The method is
widely used to identify coherent space-time patterns from historical observations at
regular and irregular locations. Unlike traditional spectrum analysis, where the basis
functions are sine and cosines, SSA is determined from estimates of the lagged cross-
covariance (space and/or time) where basis functions are data-adaptive, empirical and
orthogonal. The method can be shown to be optimal in the sense of capturing the
maximum variance with the fewest independent components. The goal here is to
estimate periodic or nearly periodic variance components in P-T-R and relate these to
hydrologic conditions across the Wasatch Front. A brief description of the method

follows.

Theory
We first define an L-dimensional data vector X, 1<I<I, 1<i<N, where [ is channe]
number representing spatial variables, i represents the time index, N is record length

and the mean of each time series has been removed. The expansion of X; is given by:
LxM

X, = LAE,, 1<I<L, 1M, 27)
k=1
where M is the window length or embedding dimension. Thus, X,;,\, X, .0, .., Xpipus
represent shifted time series at channel / from the multichannel record X, ;. The
coefficient A,." is called the space-time principal component (ST-PC). The vector E¥,
is defined as a space-time empirical orthogonal function (ST-EOF), and is the kth
eigenvector of the block-Toeplitz matrix T,:
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7;.1 71,2 YI.L
T2.1 Tz,z '
7; = = ETAE (28)
T,
I..
_TLl TL L-1 TL L J

T, is the MxM lag covariance matrix between channel / and channel ' with the

element (7););. The least-biased estimate of the element (7},);, in row j and column j'
is [Vautard et al.,1992]:

1 N-li-7]
(er) =N ZXIJXI‘

— 1M, 15'sM (29)
o N=-li-jl =

RESETN

The ST-PCs of T, are defined as the orthogonal projections of the original series on
the ST-EOFs:

A=XE. (30)
The dimension of A is (N-M+1)x(L+M). The ST-PCs can be thought of as weighted

moving averages of the original time Series X.

We are mainly interested in the ST-PC’s which contribute a large fraction of the
variance and those which represent oscillatory components of the signal and can in
some way be distinguished from the underlying noise in the record. We will revisit
the question of resolving significant periodic or almost periodic components and
noise later. The standard approach is to sort the eigenvalues A, in descending order.

The plot of eigenvalue A, versus & represents a ranking of the relative variance

contribution for each ST-PC. If adjacent eigenvalues are nearly equal and their
respective eigenvectors are in quadrature, then they are assumed to be an oscillatory
pair and the ST-EOF pairs are either periodic or almost periodic. The oscillatory pair
would represent a sine and cosine-pair with a phase shift. We apply this approach
here, inspecting the E*’s of the largest eigenvalues A, from which the period

(frequency) is estimated for a particular channel or altitude.

The cutoff for “significant” components is arbitrarily determined to be the
value of k where a flattening or change in slope of the ranked eigenvalues is observed
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and the variance contribution is small. This break in slope is sometimes referred to as
the “noise floor”. Of course this definition is problematic since ranking of
eigenvalues by size has no ordering with respect to the period or frequency content of
the data, as would be the case for Fourier spectral estimates. It is possible that
significant oscillatory pairs may not be detected, especially in cases where the
underlying noise spectrum is from a correlated stochastic process, which is often the
case in hydrologic data. Next we examine the space-time characteristics of
precipitation -temperature and runoff (P-T-R) for the Wasatch Front, northern Utah,
using multi-channel SSA and the qualitative approach to detecting oscillations
described above.

State-Space Dimension

Multichannel SSA was applied separately to the precipitation, temperature and
runoff (P-T-R) data sets. The concurrent record was from January 1948 to December
1990, representing 43 years of data. As in Fourier spectrum and covariance analysis,
it is necessary to test the effect of the time embedding (M) or lag on SSA estimates.
The range 140<M<172 was examined and M=160 seemed to provide the best
resolution across the range of oscillations of interest (annual to decadal). The ranked
eigenvalues for each variable is shown in Figure 7. From the graph, the near equality
of some pairs of leading eigenvalues is noted. These pairs often (but not always)
correspond to eigenvectors that are periodic or nearly periodic and in quadrature. The
analysis focuses on the first 8-10 components, up to the point where the slope of 4,

versus k flattens and the variance contribution is small. A summary of oscillatory
pairs and the estimated period for precipitation, temperature and runoff is given in
Table 2.

The annual oscillation represents the leading pair of eigenvalues for P-T-R as shown
in Table 2. For precipitation the annual oscillation represents 31% of the total space-
time variance. Annual harmonics at periods 0.5, 0.33 and 0.25 years individually
contribute from 1.5-1.9% of the total variance for P. The period of 11 years accounts
for 1.7% of the variance, while the interannual time scale, period 3 contributes 1.1%.
In the case of temperature, the annual oscillatory pair represents 93% of the total
variance and the semi-annual pair contributes an additional 1%. Interannual and
decadal oscillations are all quite small, with the interannual component contributing
~0.1%.

For runoff the annual oscillation contributes 27% of the total variance of the 9
stations, while the second largest oscillatory pair is at the 11-year period with 10.5%.
The seasonal harmonics contribute another 12%, while the interannual components
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represent 2.6% of the total variance. Overall, we can say that the variance
contribution for P-T-R at all altitudes is dominated by the annual oscillation and
harmonics, precipitation shows significant but weak interannual and decadal
oscillations, while runoff exhibits strong interannual and decadal oscillations.
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Figure 7. The eigenvalue spectrum for precipitation, temperature and runoff across the Wasatch
Front, northern Utah. The "noise floor" gives a measure of the statistical dimension of the hydrologic

system.
23



Reconstruction of the space-time structure of P-T-R

In order to get a better sense of how well the first few eigenmodes describe the P-T-R
signal above the noise floor, we reconstruct the P-T-R with the first eight
eigenvectors and examine the noise-free response. The reconstructed component R
associated with the k, ST-EOF at time i, and for channel /is given by [Plaut et
al.,1994]:

M
R = 1122 AL E', when M <i SN-M+l,
j=1
1 h;'
@fiz—.ZAi’_‘_jEfj when / <i <M-1,
l j=]
. 1 M . ¢ .
Ri=~—"s > ALE, when N-M <i SN (31)
j=i=-N+M

where the range of k is from 1 to LxM. A time series for any channel can be

reconstructed by summing over the dominant components. Figure 8 shows the
reconstructed time series of P-T-R for two channels, one at high elevation and another
at a low elevation. The reconstructed temperature time series represents 95% of the
total variance (4 ST-PC’s) in the original data. For precipitation, seasonal harmonics
and low-frequency components (10 ST-PC's) explain 37% of the total variance, while
59% of the total variance is explained for the runoff data (10 ST-PC’s).
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Phase-Plane Trajectory of the Reconstructed P-T-R

The dynamic behavior of the hydrologic system can be examined by constructing the
time- trajectory or parametric curve formed by using the reconstructed state variables
as coordinates. Figure 9 illustrates the P-T-R trajectory at three elevations of Wasatch
Range for the reconstructed time series. The variance components were the same as in
Figure 8 and the period of reconstruction is 43 years. At the highest altitude the three
dimensional trajectory exhibits tightly spaced loops, where each loop represents the
annual oscillation. By comparison, at low elevation the phase plane is smeared out
reflecting the introduction of the low-frequency components and deeper groundwater
discharge. The higher elevations are clearly dominated by seasonal fluctuations while
the low elevations contribute the longer time scales imparted by the characteristic

hydrogeologic conditions controlling runoff.
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Figure 9. A phase-plane plot of reconstructed precipitation-temperature -runoff for 3
elvations. Note the low-frequency, quasi-periodic character of the lowest elevation
where the long time scales of deep groundwater baseflow to streams affects the
runoff.
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Figure 10. The hydrogeologic conceptual model for the Wasatch Front showing the relation
between surface and subsurface hydrology and demonstrating the importance of the alluvial fans to
supporting low-frequency contribution to streamflow at the lowest elevation..

Model and Parameter Identification

LDMS applies the Genetic Algorithm (Holland, ) to the problem of model and parameter
identification. There are many system identification techniques that have been used to build accurate
mathematical models of dynamic systems. These are generally based least mean squares or
maximum likelihood fitting of model to data, and most are some sort of gradient-guided local search
techniques [Tan, et al., 1995]. These conventional techniques require a smooth search space and
easily fail in obtaining the global optimum when the search space is not differentiable. Furthermore,
they are not easily be applied to nonlinear systems and are not valid if the nonlinearities of the
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system are not differentiable such as with threshold nonlinearities. Genetic Algorithms (GAs) are
based on the metaphor of natural selection and Darwinian evolution. Genetic Algorithms
simultaneously search the solutions through multiple points in the solution space and often are found
to be the most effective method of finding the global optimum.

The optimum parameters are determined in such a way that the sum of squares of the difference
between the actually observed and the modeled values, multiplied by a number that measures the
degree of precision, is a minimum. This function is called the fitness function is given by:

S[a.() = an®OT

= —a) = . 32
f =exp)-ayS—r G2

In our case g, is observed runoff, g,, is modeled runoff, N is the total time steps of the simulation, i is
the time index and a is a positive scaling factor. By including the exponential function, the
minimization problem changed to maximum and the fitness value can be constrained to the range of

(O0,1].

In order to examine the accuracy of each models, we apply several forecast accuracy measures
[Maidment,1993] for estimating the forecast error. The measures include (1) mean absolute error
(MAE), (2) Relative mean absolute error (RMAE), and (3) mean square error (MSE)
[Baldment 1993] which are defined by

MAE = — Zlqm(l) qo(lX

RMAE =—; N
24,()
i=1

MAE (33)

1X 2
MSE=— S g = ,()]
i=l

Field Application: West Branch, Susquehanna River Basin

Modeling the rainfall-runoff process for a hydrologic system (river basin, drainage basin, catchment
or watershed) has been a central problem for contemporary hydrology research. The problem is
made difficult because of the heterogeneous space-time nature of hydrologic systems. Increasingly,
complex models for lareg-scale hydrological response have been developed using tools of high
performance computation. However, as has been pointed out by Jakeman and Hornberger [1993], it
is not necessarily true that spatially detailed complex models improve the model results and in fact




may lead to over-parameterization. That is, parameters themselves introduce noise or model errors
and limit the predictability of the phenomenon.

Geohydrologic Framework

The selected research site is the Upper West Branch, which is a sub-basin of the Susquehanna River
Basin. Figure 2 describes its location. This river basin is located in north central Pennsylvania and
has an area of 14,710 km®. Most of the Upper West Branch is within the Appalachian Plateau
physiographic province. Only a very small portion of the south part belongs to the Appalachian
Mountain section of the Valley and Ridge physiographic province. The regional dip of the bedrock
rarely exceeds 25 feet per mile. Elongate, gentle folds form alternating anticlines and synclines.
These gentle warps are surface expressions of small displacements along deep-seated faults.
Deformation of strata in the Appalachian Plateaus is extremely subtle. Glacial erosion and deposition
left a nearly continuous layer of till over upland bedrock. Colluvium and alluvial deposits mostly
distribute in main valleys. In this region, unconsolidated glacial, outwash, colluvium and alluvial
deposits form the upper-layer aquifer. With the enough thickness, this aquifer is mainly productive.
The consolidated sedimentary rocks mainly are shales, sandstones, siltstones and coal seams, which
are almost flat-lying to gently folded. The main water-yielding rocks are sandstones. The fractures,
joints and pores in these consolidated rocks form the bedrock aquifers. This aquifer is constructed
the lower-layer aquifer in the Upper West Branch, which is mostly overlain by the upper
unconsolidated aquifer.

Figure 11. depicts the hydrogeologic conceptual model of the Upper West Branch. The water
is occurring in the unconsolidated aquifers and bedrock aquifers. Most of the precipitation directly
recharges into the upper unconsolidated layer. In the upper land, since the till is thin and very
permeable, water in till rapidly discharges to colluvium or alluvial aquifers. In lower lands, the
precipitation mainly infiltrates into colluvium and alluvial aquifers. Then groundwater in this layer
may runoff to the local tributaries or streams. This forms the local flow system. However, a small
part of water in unconsolidated aquifers may infiltrate down to the fractures in lower bedrock
aquifers. Bedrock aquifers in the unglaciated part of the Upper West Branch accept less direct
recharge from the precipitation because this part is highly dissected and much of the area is near
highly sloping. The circulation of water in bedrock aquifers does not extends no more than a few
hundred feet below the land surface [Harlow et al, 1993] while the permeability of bedrock aquifers
decreases with depth. The small portion of the water in unconsolidated aquifer may moves vertically
downward through fractures, then horizontally flows through the consolidated aquifers and finally
discharges to the streams. Because of the limited flow depth, the water flow paths are typically not
too long, commonly extending no more than several kilometers in their longest dimension {Seaber,
et al., 1988]. The water circulation in bedrock aquifers forms the intermediate flow system. No
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regional flow occurs in this basin because the thickness of the regional permeable bedrock aquifers
is less than several hundred feet.
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Figure 11. The hydrogeologic conceptual model for a typical stream-reach within the Upper West
Branch of the Susquehanna River. Shallow till, colluvium and alluvium form the near-surface
groundwater reservoir while the deeper subsurface reservoir is dominanted by fracturing in various

sedimentary units.

The Model

For the hydrogeologic characteristics of the Upper West Branch, a series of coupled nonlinear
integral-balance model equations were proposed (Table 1). This serves to constrain the model to up
to two state variables and a minimal number of parameters. The six models of the Upper West
Branch were tested and parameters estimated with the Genetic Algorithm method for observed daily
precipitation, temperature and streamflow over the period July 1985 to June 1987. The modeled and

“observed data are depicted in Figure 12. Comparison of the results of the linear and nonlinear
models, we see that the nonlinear models improve the peakflow better than the linear models. It was
also determined that the two-state coupled nonlinear model best matches the observed runoff. The
developed models also were verified by applying the calibrated parameters to predict the runoff in

the period of July 1989 to June 1991 with the given precipitation and temperature. The predicted
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results are shown in Figure 13. As for the calibration period, the model results for the two-state

nonlinear integral-balance model matches the observed values best.

Model Type Linear Nonlinear
dy dy 2
s—==R-ay; s—==R~(ay +Py°);
One-state dt (16) dt , (17)
9% = O gy =(ay+By’);
d
Sl%=lR—a1yl: sl%l':m—(al)'.l'*'ﬁl)ﬁz);
dy,
Two-state, s, a%’l =(1= AR -0,y SZ-EYI“ =(1-A)R-(a,y + ﬁz)’zz);
2" 2
uncoupled gy =@y + ByD) +(eay, + Boy2);

Qg = alyl + az)’z3
(18)

(19)

Two-state, coupled

d
5y =R~ ouy =Yy —Yo)s

dt

dy,
52% =Y(Y1 = %)~ &Y,

9e =04 + 0 )5
(20)

d
sl’zy;L=R -(oyy, ’*‘ﬂl}’xz) =7 = Y)s

d
52 %,Z =7(y = Y%) - (), +ﬁz}’22);

g =(n+ Buy?) +(aay, + B.ya)
(21)

Table 2. List of the integral-balance models for the different conceptualized models and constitutive

relationships between state variables and output flux components.
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Figure 12. The modeled and observed runoff for the Upper West Branch for each of the 6 models
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Figure 13. Forecast for the Upper West Branch, Susquehanna River using all 6 models and the

observed precipitation and temperature record.

Accuracy Analysis

In order to evaluate the accuracy of each model, we used several forecast accuracy measures
[Maidment,1993], to estimate forecast error. The measures include (1) mean absolute error (MAE),
(2) Relative mean absolute error (RMAE), and (3) mean square error (MSE) [Baidment,1993],

which are defined by
1X . ,
MAE = = ¥ |g,,(i) - q,(i)
Ni:l
N
RMAE = —— MAE (34)
2.4,(1)

1N 2
MSE =— X[ q,,() —q,(})]
N[:I
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The lower these measures are, the higher the prediction accuracy is. Table 3 lists the estimations of
the forecast accuracy analysis for the identified models.

Model MAE RMAE MSE
One-state linear system 1.214 0.3904 3.9356
Two-state uncoupled linear 1.2917 04154 43229
system
Two-state coupled 1.1578 0.3724 3.541
linear system
One-state nonlinear system 1.046 0.3364 3.3625
Two-state uncoupled 1.0295 0.3311 3.1952

nonlinear system

Two-state coupled 0.9764 0.3140 2.7560
nonlinear system .

Table 3. Forecast accuracy for the six developed models of the Upper West Branch.

We note that the two-state coupled nonlinear version of the model represents the best model
performance of the Upper West Branch.

Figure 12 and 13 also show that during periods of drought as in July, August, September and
October in both 1985 and 1989, the model over-estimates the runoff. We propose that a major reason
for this overestimation is that unsaturated groundwater flow is not included in the initial models. In
the periods of drought, the soil moisture reservoir may totally dominate the runoff by reducing
recharge to saturated groundwater and absorbing all precipitation events. When rainfall occurs, the
soil moisture first has to meet the deficit and satisfy soil field capacity before infiltration and
recharge can occur. Future improvements to the model will explore this process.
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